An Optimal Order Method for Multiple Roots in Case of Unknown Multiplicity

نویسنده

  • Jai Prakash Jaiswal
چکیده

In the literature, recently, some three-step schemes involving four function evaluations for the solution of multiple roots of nonlinear equations, whose multiplicity is not known in advance, are considered, but they do not agree with Kung–Traub’s conjecture. The present article is devoted to the study of an iterative scheme for approximating multiple roots with a convergence rate of eight, when the multiplicity is hidden, which agrees with Kung–Traub’s conjecture. The theoretical study of the convergence rate is investigated and demonstrated. A few nonlinear problems are presented to justify the theoretical study.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fifth-Order Iterative Method for Solving Multiple Roots of the Highest Multiplicity of Nonlinear Equation

A three-step iterative method with fifth-order convergence as a new modification of Newton’s method was presented. This method is for finding multiple roots of nonlinear equation with unknown multiplicity m whose multiplicity m is the highest multiplicity. Its order of convergence is analyzed and proved. Results for some numerical examples show the efficiency of the new method.

متن کامل

A third-order modification of Newton's method for multiple roots

Keywords: Newton's method Multiple roots Iterative methods Nonlinear equations Order of convergence Root-finding a b s t r a c t In this paper, we present a new third-order modification of Newton's method for multiple roots, which is based on existing third-order multiple root-finding methods. Numerical examples show that the new method is competitive to other methods for multiple roots. Solvin...

متن کامل

On the optimality of some multi-point methods for finding multiple roots of nonlinear equation

This paper deals with the problem of determining the multiple roots of nonlinear equations, where the multiplicity of the roots is known. The paper contains some remarks on the optimality of the recently published methods [B. Liu, X. Zhou, A new family of fourth-order methods for multiple roots of nonlinear equations, Nonlinear Anal. Model. Control, 18(2):143–152, 2013] and [X. Zhou, X. Chen, Y...

متن کامل

Basin attractors for various methods for multiple roots

There are several methods for approximating the multiple zeros of a nonlinear function when the multiplicity is known. The methods are classified by the order, informational efficiency and efficiency index. Here we consider other criteria, namely the basin of attraction of the method and its dependence on the order. We discuss all known methods of orders two to four and present the basin of att...

متن کامل

A Neural Network Method Based on Mittag-Leffler Function for Solving a Class of Fractional Optimal Control Problems

In this paper, a computational intelligence method is used for the solution of fractional optimal control problems (FOCP)'s with equality and inequality constraints. According to the Ponteryagin minimum principle (PMP) for FOCP with fractional derivative in the Riemann- Liouville sense and by constructing a suitable error function, we define an unconstrained minimization problem. In the optimiz...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Algorithms

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2016